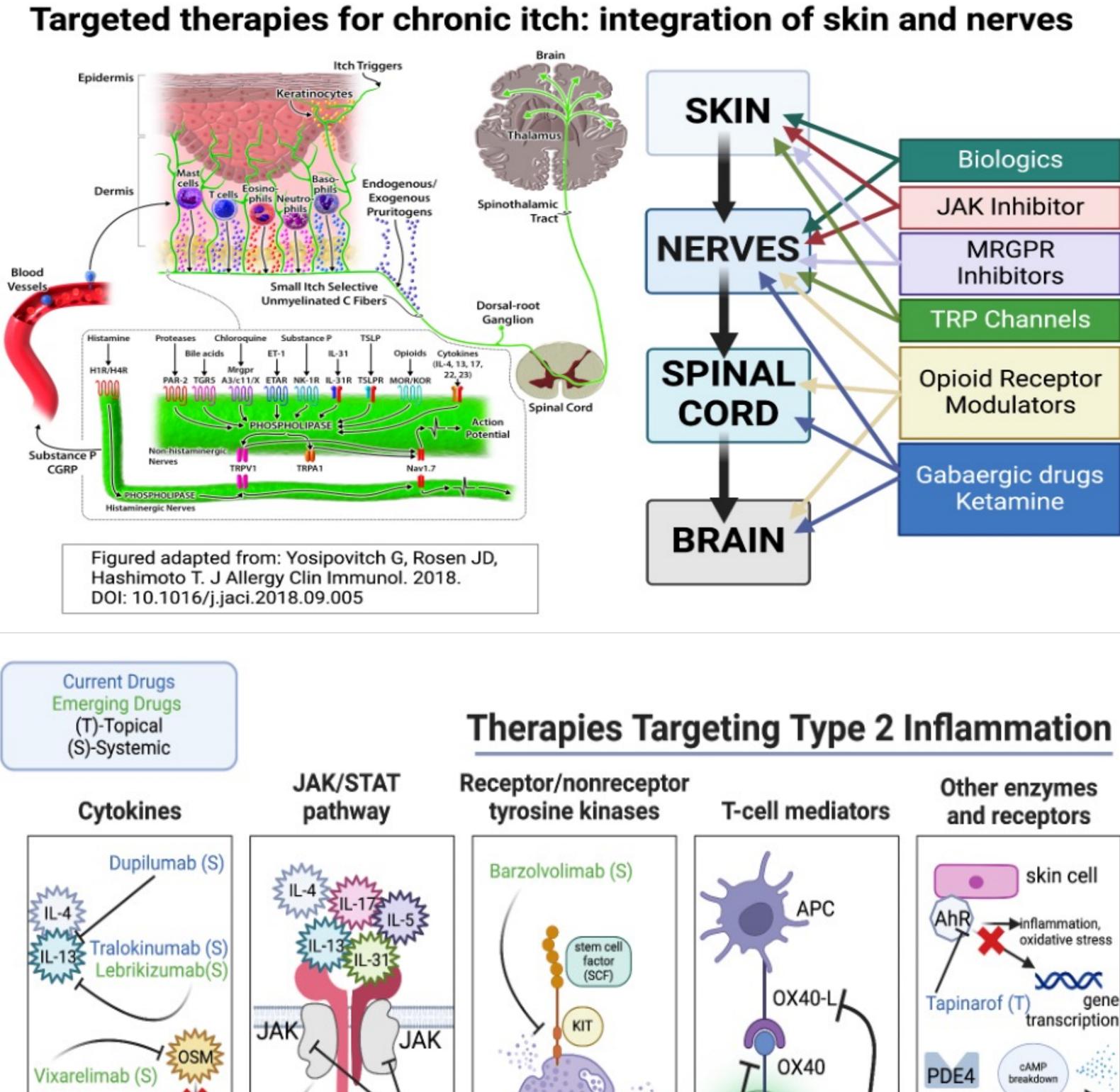


¹Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine


Therapeutics

Background

 The prevalence of pruritus is exceedingly high and has been reported in nearly 40% of adults [1].

• The mechanisms of itch are complex and include peripheral and central pathways and various itch mediators and receptors.

Numerous drugs targeting type 2 inflammation and neural

Adverse Effects

UNIVERSITY OF MIAMI

of MEDICINE

MILLER SCHOOL

Table 1. Adverse Effects of Current Therapies Used for Chronic Pruritus

Medication Class	Drug	Route	Common Adverse Effects
Topical	Mild, moderate,	Cream/	Skin atrophy, loss of pigmentation,
Corticosteroids	or high potency		striae
		/ spray	
Calcineurin	Tacrolimus	1 2	Stinging/burning, headache
Inhibitors	Pimecrolimus	Cream	Stinging/burning, neauache
PDE4 Inhibitors	Crisaborole	Cream	Stinging/burning headache
FDE4 IIIIIDITOIS	Roflumilast	Cream	Stinging/burning, headache
AhR Activator	Tapinarof	Cream	Headache, nausea Folliculitis, nasopharyngitis,
AIIX ACTIVATOI	Tapillator	Cicain	headache, contact dermatitis
JAK/Stat inhibitors	Ruxolitinib	Cream	Application-site erythema, UTI,
	Kuxontinio	Cicain	headache, nasopharyngitis
	Unadasitinih	Oral	
	Upadacitinib	Oral	Acne, URI, folliculitis, abdominal
	A 1	01	pain, nausea, anemia, transaminitis
Deve e d. Cre e eterrore	Abrocitinib	Oral	URI, nausea, headaches, acne, AD
Broad Spectrum	Methotrexate	Oral	N/V, mucosal ulcers,
Immunosuppressants		0.1	myelosuppression
	Mycophenolate	Oral	Nausea, vomiting, leukopenia
	Mofetil		
	Azathioprine	Oral	N/V, leukopenia
Monoclonal	Dupilumab	SQ	Injection-site reaction, URI,
Antibodies			conjunctivitis
	Tralokinumab	SQ	Injection-site reaction, conjunctivitis
	Secukinumab	SQ	Infection, nasopharyngitis
	Ixekizumab	SQ	Neutropenia, URI, injection-site
			reaction
	Brodalumab	SQ	Infection (bronchitis, nasopharyngitis
	Dictuluinuo	~ <	pharyngitis, URI, UTI), arthralgia
Anesthetics	Lidocaine	Ointment	Stinging/burning, headache, systemic
	Pramoxine HCl		toxicity
		gel/	toxicity
		lotion/	
		spray	Rare psychoactive effect with KAL
	KAL	Cream	
Calcimimetics	Strontium	Gel,	Irritating, burning sensation,
		Salts	erythema, edema
TRP Channel	Capsaicin	Cream	Irritation and burning sensation
Modulators	Menthol		in the curring sensation
Opioid Receptor	Naltrexone	Oral, IM	GI upset, syncope, transaminitis,
Agonists/ Antagonists			injection-site reaction, headache,
			dizziness, insomnia, pharyngitis
	Naloxone	IV, IM,	Headache, joint and muscle pain
	INdioxofic	SQ, IN	ficadaciic, joint and muscle pam
	Difelikefalin	IV	Diarrhea, nausea, dizziness, abnorma
			gait, headache, hyperkalemia
A m 4: d am man a m 4 m	Controlin o	Oral	
Antidepressants	Sertraline	Oral	GI upset, dizziness, drowsiness,
	Paroxetine	Oral	fatigue, insomnia, hyperhidrosis,
	Fluvoxamine	Oral	decreased libido, diaphoresis,
	Minter	01	ejaculatory dysfunction
	Mirtazapine	Oral	Compalance 1: · · ·
GABA Analogs	Gabapentin	Oral	Somnolence, dizziness, insomnia,
	Pregabalin		N/V
a 11 11	D 1' 1	0 1	NT/TT / 1 1' 1
Cannabinoids	Dronabinol	Oral	N/V, tachycardia, somnolence, and dizziness

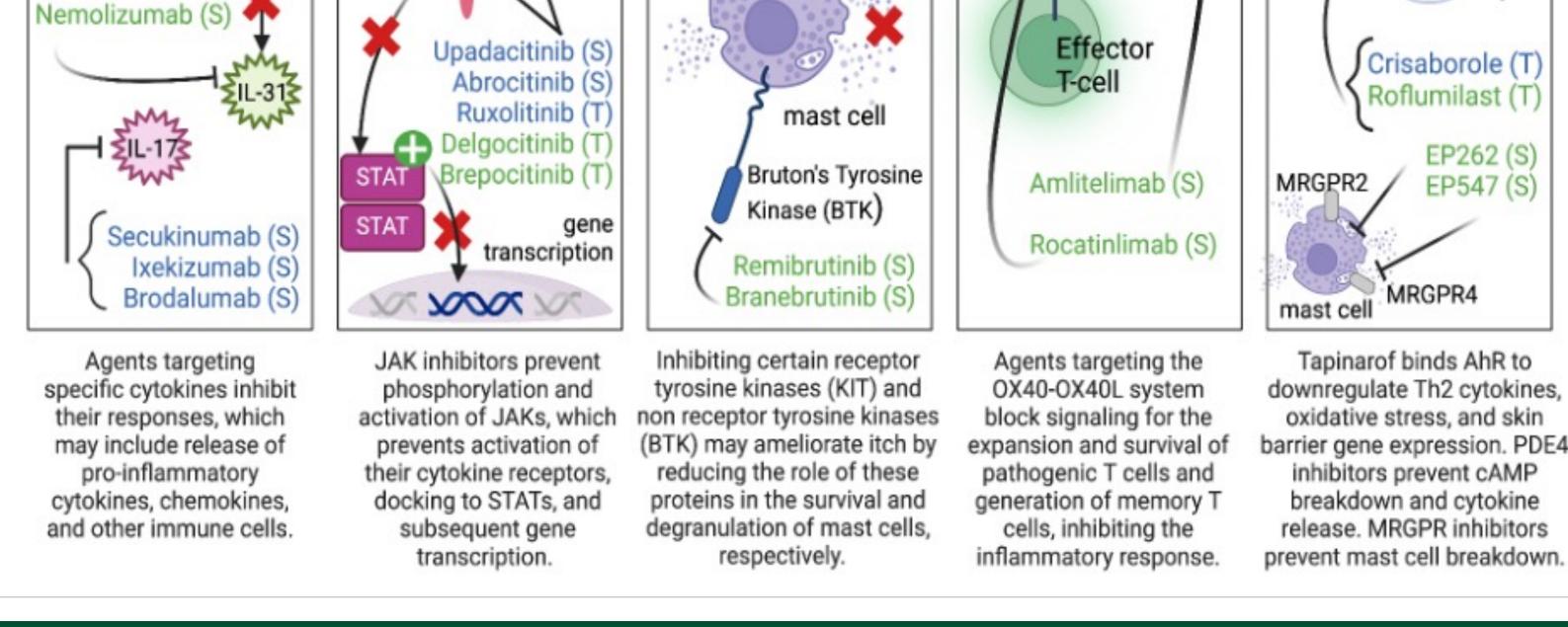
targets have shown efficacy in ameliorating itch.

Peripheral Mechanisms of Itch

- The sensation of itch begins with the activation of pruriceptive free nerve endings in the skin.
- the vast majority of itch is transmitted by C fibers from the periphery to the central nervous system.

Histamine-Mediated Itch

- Activated mast cells undergo degranulation, releasing histamine and other mediators that stimulate circulating immune cells to occupy the space and clear the potential pathogen.
- There are four histamine receptors, two of which (H1R and H4R) are located on histaminergic neurons and expressed in the dorsal root ganglia (DRG) where they mediate itch [2].


Non-Histamine-Mediated Itch

Therapies Targeting Type 2 Inflammation

- The majority of chronic itch types are mediated by nonhistaminergic pathways.
- C fibers that are mechanically- and heat-sensitive are activated by an abundance of non-histaminergic pruritogens that may be endogenously secreted (proteases, chemokines, amines) or exogenously introduced (cowhage, capsaicin) [3].
- These pruritogens bind their respective receptors on nonhistaminergic neurons and activate TRPV1 or TRP Ankyrin 1 through the phospholipase or kinase system [4], [5].
- This generates an action potential and signaling cascade that is conducted to the dorsal horn of the spinal cord.

Central Mechanisms of Itch

Following processing in the spinal cord, itch signals are transmitted via projection neurons to the thalamus and

Conclusions

- The field of pruritus research is rapidly and continuously evolving. With that, numerous drugs have been developed, reflecting the diverse array of biochemical targets identified.
- From inflammatory mediators to neural targets and receptors, the possibilities for itch relief are vast and varied and should be curated to the disease context.
- Further research is indicated to assess more long-term outcomes and safety considerations as well as to continue to identify novel treatment modalities.

parabrachial nucleus in the brainstem [6].

From here, information is sent to various regions of the brain. Silverberg JI, Hinami K, Trick WE, et al. Itch in the General Internal Medicine Setting: A Cross-Sectional Study of Prevalence and Quality-of-Life Effects. Am J Clin Dermatol. 2016 Dec;17(6):681-690.

Certain areas of the brain nonspecifically play a role in the Dong X, Dong X. Peripheral and Central Mechanisms of Itch. Neuron. 2018 May 2;98(3):482-494.

higher processing of itch, including the thalamus, primary and

secondary somatosensory cortices, posterior parietal cortex,

insula, superior and middle temporal cortices, posterior and

anterior cingulate cortices, precuneus, and cuneus [7].

Lay M, Dong X. Neural Mechanisms of Itch. Annu Rev Neurosci. 2020 Jul 8;43:187-205

Kittaka H, Tominaga M. The molecular and cellular mechanisms of itch and the involvement of TRP channels in the peripheral sensory nervous system and skin. Allergol Int. 2017

Jan;66(1):22-30

Wilson SR, Gerhold KA, Bifolck-Fisher A, et al. TRPA1 is required for histamine-independent, Mas-related G protein-coupled receptor-mediated itch. Nat Neurosci. 2011 May;14(5):595-602.

Mu D, Deng J, Liu KF, et al. A central neural circuit for itch sensation. Science. 2017 Aug 18;357(6352):695-699. 6.

Papoiu AD, Coghill RC, Kraft RA, et al. A tale of two itches. Common features and notable differences in brain activation evoked by cowhage and histamine induced itch. Neuroimage. 2012 Feb 15;59(4):3611-23.

Topical Drugs Targeting Type 2 Inflammation Systemic Drugs Targeting Type 2 Inflammation Drugs Targeting the Neural System

KAL: Ketamine/Amitriptyline/Lidocaine, AhR: Aryl Hydrocarbon Receptor, UTI: Urinary Tract Infection, URI: Upper Respiratory Infection, AD: Atopic Dermatitis, SQ: Subcutaneous, IV: Intravenous, IM: Intramuscular, IN: Intranasal, N/V: Nausea/vomiting